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Abstract

Studies of evolutionary responses to novel environments typically consider single species or perhaps pairs of interacting
species. However, all organisms co-occur with many other species, resulting in evolutionary dynamics that might not match
those predicted using single species approaches. Recent theories predict that species interactions in diverse systems can
influence how component species evolve in response to environmental change. In turn, evolution might have
consequences for ecosystem functioning. We used experimental communities of five bacterial species to show that species
interactions have a major impact on adaptation to a novel environment in the laboratory. Species in communities diverged
in their use of resources compared with the same species in monocultures and evolved to use waste products generated by
other species. This generally led to a trade-off between adaptation to the abiotic and biotic components of the
environment, such that species evolving in communities had lower growth rates when assayed in the absence of other
species. Based on growth assays and on nuclear magnetic resonance (NMR) spectroscopy of resource use, all species
evolved more in communities than they did in monocultures. The evolutionary changes had significant repercussions for
the functioning of these experimental ecosystems: communities reassembled from isolates that had evolved in polyculture
were more productive than those reassembled from isolates that had evolved in monoculture. Our results show that the
way in which species adapt to new environments depends critically on the biotic environment of co-occurring species.
Moreover, predicting how functioning of complex ecosystems will respond to an environmental change requires knowing

how species interactions will evolve.
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Introduction

Understanding how species adapt to novel environments is an
important task both for understanding the dynamics of living
systems and for predicting biotic responses to anthropogenic
changes in the natural environment [1-3]. However, most studies
of evolutionary adaptation consider single species in isolation.
Although this approach is useful for uncovering genetic mecha-
nisms, virtually all species co-occur with many other species. Faced
with a new abiotic environment, communities might respond by
evolution of component species, but ecological changes in species’
abundances and distributions can also occur. If ecological in-
teractions such as competition affect evolutionary responses [4,5],
then results from single species studies might not accurately predict
evolutionary dynamics in diverse assemblages.

Although there has been growing interest in how evolution
affects ecological dynamics [6-10], most studies have still con-
sidered single species or pairs of interacting species. In addition,
the question of how ecological interactions affect evolutionary
responses to novel abiotic environments has received even less
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attention [11,12]. If ecological interactions among species are
weak, then evolutionary changes should be the same as those
predicted in single species studies. However, if species use over-
lapping resources or otherwise interact, the extent and type of
evolutionary responses might differ from those predicted if the
same set of species each adapted to the new abiotic conditions in
isolation [13,14].

Several mechanisms might influence evolutionary dynamics in
mixtures of species. Iirst, species in diverse communities might
have their resource use restricted by competitors, lowering
effective population sizes and therefore reducing the rate at which
beneficial mutations arise and the species adapts to a novel en-
vironment [5,15]. In this scenario, species in communities should
adapt to the new environment as they would in isolation, but the
rate of adaptation would be reduced. Second, if trait variation
among species exceeds variation within species, a new abiotic
environment might act on the relative abundance of different
species (ecological sorting) rather than on genetic variation within
species [4,5]. In models of this mechanism, pre-adapted species
increase in abundance at the expense of less well-adapted species
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Author Summary

Understanding how species adapt to new environments is
important both for evolutionary theory and for predicting
and managing ecosystem responses to changing environ-
ments. However, most research into adaptation to new
environments has considered species in isolation. Whether
results from these systems apply to more realistically
diverse groups of species remains unclear. We exposed
five species of bacteria, collected from pools around the
roots of beech trees, to a novel laboratory environment
either in isolation or in species mixtures for approximately
70 generations. We found that each species evolved more
in diverse species mixtures than it did when cultured in
isolation. Moreover, species diverged in their use of
resources and how they used the waste products of other
species. These changes meant that the community of
bacteria that evolved together used more of the available
resources and were thereby more productive than the
same group of species that evolved in isolation. Our
findings show that species interactions can have a major
effect on evolutionary dynamics, which can in turn
influence ecosystem functioning.

and the average amount of evolution in surviving species is
typically reduced compared to responses of the same species in
monoculture (although in rare scenarios the amount of evolution
can increase [4]). Third, there might be a trade-off between
adaptation to biotic and abiotic components of the environment
[16]. Such trade-offs might result from the production of costly
adaptations involved in species interactions such as defences
[17,18] or from selective interference between adaptations to the
biotic and abiotic environment [19]. In this case, species that
evolved in communities should be less well adapted to the abiotic
environment than if they adapted in isolation and vice versa. In
the most extreme case, species might adapt to use resources
generated by other species [20], in which case they will evolve
entirely different resource use depending on whether other species
are present.

These mechanisms could change both the magnitude and
direction of evolutionary change in communities compared to
predictions from single species studies. However, evidence for an
effect of diversity is currently scarce. Experiments have shown that
diversity can inhibit evolution; for example, Brockhurst et al. [21]
showed that niche occupation restricts adaptive radiation of a
single bacterial strain. Similarly, Collins [16] found that diversity
limits adaptation to elevated COy in algae and Perron et al. [22]
showed that diversity limits the evolution of multi-drug resistance
(although this effect was alleviated by horizontal transfer of
resistance mutations). However, these studies considered genetic
diversity within species rather than species diversity within
communities. There is abundant evidence that coevolution drives
fast evolution between species with strong ecological interactions
[23,24] and that pairwise coevolution can change the direction of
evolution compared to adaptation in isolation [14]. Furthermore,
studies of diffuse coevolution have shown that adaptation of a focal
species to particular interacting species, such as insect herbivores,
is influenced by interactions with other species, such as vertebrate
herbivores [25-28]. For example, character displacement of
limnetic and benthic species pairs of sticklebacks only occurred
in lakes with low species diversity of other fish [29]. To the best of
our knowledge, however, the evolution of interactions among
multiple species in a community has not been investigated using an
experimental evolution approach.
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Evolutionary dynamics in diverse systems will have important
consequences for ecosystem functioning in altered environments.
Ecosystem functions such as decomposition and productivity
emerge from the degree to which species are adapted to their
biotic and abiotic environments [30-32]. Following a change in
the environment, ecosystem functioning might be disrupted either
because the species abundances change or because component
species fail to adapt to the new environmental optimum. Al-
ternatively, coevolution among species might act to enhance
ecosystem properties, for example if species evolve complementary
resource use and thereby increase ecosystem productivity [33].
Understanding of these processes is needed to predict how
ecosystem functioning will respond to environmental changes
over evolutionary timescales.

Here, we test whether species diversity influences environmental
adaptation and ecosystem functioning using naturally co-occurring
decomposer bacteria from temporary pools around the roots
of beech trees (Fagus sylvatica), which have previously been used
successfully for experimental ecology [34,35]. We chose five
species of bacteria differing in colony colour and shape so that
each species could be isolated from species mixtures (Tables S1
and S2). Sequencing of 16S rDNA showed that isolates belong to
five different families (Table S1). We refer to them as species since
they represent genetically and phenotypically distinct clusters that
co-occurred naturally. Monocultures of each species and poly-
cultures containing all five species were allowed to adapt to
laboratory conditions by regular serial transter on beech-leaf
extract (Figure 1). Laboratory conditions represent a new
environment and differ from wild tree-holes in several ways:
tree-holes receive a larger quantity and variety of resources, are
spatially complex, and have an unpredictable input of water and
leaves, whereas laboratory cultures experienced regular dilution
with uniform medium in a shaken container. Growth assays were
used to determine evolutionary responses. We predicted that
species should adapt to laboratory conditions by evolving faster
growth rates on the beech tea medium, but that the presence of
other species might change the direction and extent of adaptation
by one of the mechanisms outlined above.

To measure species interactions and changes in resource use,
our approach was to grow one species on beech tea, then to filter-
sterilize the medium and to assay the growth of a second species on
the “used” beech tea. If the second species used similar resources
to the first (l.e., if their niches overlapped), the second species
should grow less well on “used” beech tea than on “unused” beech
tea because its resources would have been consumed. If the two
species were specialized on different resources (i.e., occupied
different niches), the second species should grow equally well on
“used” and “‘unused” tea. Fmally, if the second species used
resources produced by the first (called facilitation or cross-feeding
[36]), the second species should grow better on “used” tea than on
“unused” tea. While this method does not provide direct
information on competitive interactions in mixtures, it provides
a tractable and reproducible measure of changes in resource use of
each species during evolution. Because other types of interaction,
such as direct inhibition by bacteriocides [37], might also affect
growth rates, we also used nuclear magnetic resonance (NMR)
spectroscopic profiling of “used” and “‘unused” tea to investigate
changes in resource use directly.

Finally, we tested whether adaptation to the presence of other
species affected productivity (rate of production of COy) by
reassembling communities with different evolutionary histories
using isolates that either evolved in monoculture or co-evolved in
the same polyculture. If adaptation increased community pro-
ductivity, we expected communities reassembled with isolates that
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i) Stock
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i) Initiate
experiment
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iv) Plate on agar

v) Isolate
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(Repeated for species C, D and E)
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Figure 1. Experimental design for the evolution experiments. (i) Stocks of wild isolates were grown up, each comprising a single starting
genotype of each species. (ii) Experiments were started with each species in monoculture or in polyculture (all five species mixed together). (i) To
stimulate active growth and promote adaptation to the laboratory conditions, each culture was diluted 20-fold in fresh medium twice weekly for
8 wk. Tubes were shaken to prevent the formation of biofilms and maintain spatial homogeneity. Numbers of generations ranged from 60.9 to 82.2
across cultures and effective population sizes ranged from 5.3 x10° t0 9.9 x10° (Table S3). (iv) Final cultures were plated on agar. (v) Single colonies of

each species were isolated for growth assays described in the main text.

doi:10.1371/journal.pbio.1001330.g001

evolved in polycultures to be more productive than those re-
assembled with isolates that had evolved in monoculture.

Results

Growth Rates on Beech Tea of Monoculture Isolates
Although able to grow on beech tea in the lab at the start of the
experiment, one species (E) dwindled to low cell densities during
the evolution experiment (Table S3) and was excluded from
growth assays and subsequent experiments because it failed to re-
grow from frozen cultures. Species A to D were recoverable in all
treatments and were used for subsequent experiments. Across
species, final isolates that evolved in monoculture grew on average
faster than ancestral isolates of the same species on unused beech
tea (dark bars, first and second rows, Figure 2), consistent with the
prediction that they adapted to laboratory conditions of serial
dilution in beech tea medium by increasing growth rates on this
medium. The effect was significant in species B, C and D, which
grew between 47% and 120% faster after evolving in monoculture
compared to their ancestral isolates. Growth rates of evolved
monoculture isolates of species A were not significantly different
from its ancestral isolate. Note that phenotypic plasticity and
parental effects can be discounted as explanations for differences
among treatments. In all our assays, frozen isolates were first
grown in beech tea medium for 4 d (=4 to 6 generations, Table
S3), and then an aliquot was taken from these cultures to start the
assay cultures. Differences in phenotypes between treatments were
therefore maintained after several generations of growth in
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identical environments and cannot be readily explained by
phenotypically plastic responses.

Growth Rates on Beech Tea of Polyculture Isolates

Isolates of species A, B, and C that evolved in polyculture grew
significantly slower on unused beech tea than their corresponding
ancestral isolates and than the isolates that evolved in monoculture
(Figure 2). Growth rates were 87% to 100% slower after evolving
in polyculture compared to the corresponding ancestral isolates.
This is consistent with the existence of a trade-off between ad-
aptation in the presence of other species and adaptation in the
absence of other species; when evolving in the presence of other
species, isolates of A, B, and C nearly lost the ability to grow on
unused beech tea. In contrast, the polyculture isolate of species D
grew significantly faster on unused beech tea than either ancestral
or monoculture isolates. By adapting in the presence of the other
species, species D evolved to grow at a faster rate on beech tea
when assayed with other species absent. This result is not readily
predicted by the general theories outlined in the introduction and
1s discussed further below.

Species Interactions between Ancestors and between
Isolates Evolved in Monoculture

Reduced growth of ancestral isolates on beech tea previously
used by other ancestral isolates showed that species had generally
negative interactions (Figures 3A, S1), as predicted if species used
overlapping resources. The exception was species D, whose
growth was not reduced on tea previously used by other species
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Figure 2. Maximum growth rates of isolates after evolution under each diversity treatment. Maximum rate of growth from low densities,
Vmax. of each species grown on unused beech tea under assay conditions. Dark bars, growth rates of ancestral isolates. Mid grey bars, growth rates of
monoculture isolates. Pale bars, growth rates of polyculture isolates. Standard error bars are shown. Tukey Honest Significant Difference test contrasts
between treatments: *** p<<0.001, ** p<<0.01, * p<<0.05; n.s., not significant (see also Table S4). Species A evolved slower maximum growth rates in
polycultures compared to its ancestral and monoculture isolates. Species B and C evolved faster maximum growth rates on unused beech tea in
monocultures, but far slower maximum growth rates in polycultures compared to ancestral isolates. Species D evolved faster maximum growth rates
in monocultures compared to its ancestral isolate and even faster maximum growth rates in polycultures.

doi:10.1371/journal.pbio.1001330.g002

even though tea used by species D reduced the growth of other
species (arrows towards species D on Figure 3A). This result might
indicate that species D used a greater range of resources than the
other species, but which included the resources used by the other
species. Growth of monoculture isolates on tea previously used by
monoculture isolates of other species showed that negative
interactions among species were reinforced: now species D also
grew significantly slower on tea previously used by other species
(Figure 3B). These results would be expected if species in
monoculture converged to use a more similar set of resources.

Species Interactions between Isolates that Evolved in

Polycultures

Species interactions evolved to be more positive between
polyculture isolates than between ancestral or monoculture isolates
(Figure 3C). Species B and C evolved in polyculture to grow
significantly faster on tea previously used by other species than on
unused beech tea (Figures 3C and S1). Thus, interactions shifted to
facilitation as predicted if species adapted to use resources being
produced by other species as waste products of metabolism.
Polyculture isolates of D remained negatively affected on substrate
used by other species, although less so than their monoculture
isolates (Figure S1, relative growth rate on used tea versus unused
tea: in monoculture, 0.24%+0.05, and in polyculture, 0.77£0.07),
indicating that species D also adapted to the presence of other
species. Polyculture isolates of species A grew poorly on all
substrates (Figure S1), but again the interactions were significantly
less negative than between ancestral and between monoculture
isolates.
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Resource Use of Ancestral, Monoculture, and Polyculture
Isolates

Forty-three separate resonances (i.e., peaks) were distinguished
and integrated from the NMR spectra (Figures S2 and S3).
Variation in the net use and production of peaks in the spectra
across ancestral, monoculture, and polyculture isolates of each
species confirmed that resource use evolved in each of the species
in ways that matched findings from the growth assays (Figures 4,
S2, and S3). Considering the multivariate space of resource
use and production across all compounds, polyculture isolates
displayed greater differences from ancestral isolates than did
monoculture isolates (across species, mean and standard error of
Euclidean distance between paired ancestral isolates and
monoculture isolates = 1.20+0.26; mean and standard error of
distance between ancestral isolates and polyculture iso-
lates =2.42+0.37, p=0.003, Monte Carlo simulation). More-
over, although species evolved, if anything, to have marginally
more similar resource use in monoculture (not significantly so,
p=0.36, Monte Carlo simulation), patterns of resource use and
production diverged significantly between species in polycultures
(p=10.010, Monte Carlo simulation; mean and standard error of
Euclidean  distance  between  species:  ancestral
lates =2.27%0.01; monoculture isolates =1.98+0.01; polycul-
ture isolates =3.41%0.01). Together these results show that
species’ use of NMR-visible carbon substrates in the beech tea
evolved more in polyculture treatments than in monoculture
treatments and did so in a way to increase the differences in
metabolism between species and thereby to reduce negative
interactions between them.

150~
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Figure 3. The interspecific impacts of resource use on relative growth. Interspecific effect on relative growth among species inferred from
their ability to grow on sterile beech tea previously used by each other species, shown separately for each treatment. Blue arrows indicate negative
effects on growth, and red arrows indicate positive effects on growth. The width of the arrow represents the maximum growth rate (Vy4x) on used
tea minus the maximum growth rate on unused tea (underlying data in Figure S1 and linear model in Table S4). Dashed lines indicate that growth on

used tea was not significantly different from growth on unused tea.
doi:10.1371/journal.pbio.1001330.9g003

Principal components analysis identified the main axes of
variation in net use or production of these compounds across
ancestral, monoculture, and polyculture isolates of each species
(Figure 4). The first principal component distinguished isolates
based on the degree to which they used glucose, choline, formate,
and succinate to produce pyruvate (Figure S4). The second
principal component distinguished isolates based on whether they
used up or produced acetate, formate, and lactate. Notable
changes in polyculture isolates were as follows: species A evolved
to produce 96% more acetate and to produce rather than use
formate; species B evolved to use up to 84% more choline,
formate, and lactate and to use rather than produce succinate;
species G evolved to use rather than produce acetate; and species
D evolved to produce rather than to use lactate and to use rather
than produce acetate (Figure S3).

These observed changes indicate possible cases of cross-feeding
evolving in polycultures, which might explain the positive in-
teractions observed in growth assays. For example, species D
evolved to produce lactate in polycultures and species B to use it.
To test whether species generally evolved increased use of other
species’ waste products in polycultures, we quantified the amounts
of substrates produced by each species grown on beech tea and the
amounts of the same substrates that were used by a subsequent
species grown on the “used” beech tea (Figure S5). On average
across species, polyculture isolates displayed significantly increased
use of substrates (i.e., a more negative change in the amounts of
the substrate on the y-axis of Figure 5) that were produced in
increased amounts by other species (a more positive change in
the amount of substrates on the x-axis of Figure 5, Pearson’s
correlation, r=—0.74, p<<0.0001), relative to ancestral isolates.
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Moreover, although monoculture isolates were also able to use
waste products generated by other monoculture isolates, the
correlation between increased production and increased use
(relative to ancestral isolates) was significantly weaker (Pearson’s
correlation r=—0.20, p=0.03; significant interaction between
slope and treatment, linear model results in Figure 5). Polyculture
isolates therefore appear to have evolved greater use of waste
products generated by polyculture isolates of other species.

Ecosystem Functioning

Communities were reassembled to contain one isolate of each of
the four surviving species. Communities reassembled using isolates
that evolved in polycultures displayed significantly higher produc-
tivity, measured as COj, production rate, than communities
reassembled using isolates that evolved in monoculture (Figure 6).
Adaptation to the biotic environment of co-occurring species
therefore increased community productivity.

Discussion

Our results show that species interactions had a major impact
on how species adapted to the new environment in the laboratory.
In all four surviving species, the magnitude of evolution in terms of
changes in growth rate on beech tea medium and changes in use of
NMR-visible resources was significantly greater in polycultures
than in monocultures. Moreover, species diverged in resource use
in polycultures compared to monocultures and ancestral isolates.
This provides experimental evidence for a classic scenario of
character displacement reducing the overlap of resources used
by interacting species [38]. Furthermore, not only were negative
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Figure 4. Evolution of resource use. Trajectories of evolution in
monoculture (solid black arrows) and polyculture (grey dashed arrows)
of each species with respect to the first two principal components
summarizing variation in their ability to use and produce compounds
identified by NMR. The start of each arrow indicates the position of the
ancestral isolates along these axes. Increasing PC1 is correlated with
using more glucose, choline, formate and succinate, and producing
more pyruvate (Figure S4). Increasing PC2 is correlated with using more
acetate, formate, and producing more lactate. Species resource use
evolved more in polyculture than in monoculture (dashed grey arrows
are longer than solid black ones), and polyculture isolates display
greater divergence in resource use and production than either ancestral
or monoculture isolates (dashed grey arrows point towards the four
corners of the plot).

doi:10.1371/journal.pbio.1001330.9g004

mnteractions reduced, but species also adapted to use waste pro-
ducts of other species in polycultures, leading to positive in-
teractions between some pairs of species. Together, these changes
led to increased productivity of the entire community. By evolving
to use different resources, and to metabolise waste products of
other species, the species collectively decomposed substrates in the
beech tea more effectively. Similar results have been observed for
cross-feeding ecotypes evolving during monoculture experiments
[33,39]; here we show that cross-feeding also evolves readily
between distantly related species of bacteria.

The effect of species interactions on evolution varied among
species. In three species, A, B, and C, there was a trade-off
between adaptation to the laboratory environment in the presence
of other species and adaptation in the absence of other species:
polyculture isolates grew less well when assayed in isolation than
did monoculture isolates. In species B and C this occurred because
they adapted to use waste products generated by other species,
which was demonstrated both by their increased growth on
medium previously used by other species and by their increased
use of waste products from other species. In species A it occurred
because this species changed to use different carbon sources than
the other species: its interactions became less negative in the
polyculture treatment than between ancestral or monoculture
isolates (but not positive) and it used more trehalose and less
glucose and lactate (Figure S3).

In contrast, species D displayed a positive effect of diversity on
its adaptation to abiotic conditions: the polyculture isolate had
enhanced growth rate when assayed on its own compared to either
the ancestral or monoculture isolates. There is no evidence that
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species D polyculture isolates evolved to use any of the NMR-
visible resources more effectively than any other isolates. We
therefore hypothesize that polyculture isolates of species D evolved
increased use of complex carbon sources that cannot be dis-
tinguished by NMR. One clue supporting this hypothesis is that
polyculture D produced large amounts of lactate and was the only
isolate to do so and without correlated negative change in any
other compound. We suggest therefore that species D could be
producing lactate from metabolism of compounds not distinguish-
able by NMR—for example, macromolecular structures such as
mixtures of proteins. None of the general theories outlined in the
introduction readily explain why species D should enhance its
ability to grow on its own after evolving in polyculture. However,
In rare circumstances in the niche simulation model by de
Mazancourt et al. [4], competition among species could “push”
one species to evolve into a wider range of niches than it would
do so when in the absence of competitors. The observation that
species D has shifted away from its ancestral and monoculture
1solates in resource use and away from the polyculture isolates of
other species is consistent with this possibility (Figure 4).

Despite differences in response among the species, in all cases
the effects of diversity arose because co-adaptation between species
altered their ability to grow in an environment free of other
species. The other mechanisms outlined in the introduction cannot
explain our results. Effective population sizes were generally lower
in polycultures (Table S3), but still exceeded 10° in all surviving
species, and polyculture isolates did not adapt more slowly than
monocultures. Instead, co-adaptation with other species rendered
species A, B, and C even less well adapted to the abiotic
environment in the absence of other species than their ancestors,
and species D better adapted. Similarly, our results do not reflect
the damping of evolutionary responses by ecological sorting,
because species’ use of NMR-visible compounds in fact evolved
more in polycultures than in monocultures. Species E might have
dwindled to low numbers in polycultures because of one of these
two mechanisms (Table S3), but in any case it failed to sustain
large populations during the experiment even in monocultures.

The NMR results show that changes in resource use can explain
observed changes in interactions and productivity (see also [40]).
It remains possible that other interactions could be operating
among these species as well, but which remained undetected by
our assays. Some of the metabolites generated by species could
have had toxic effects on other isolates, and some of the observed
metabolic changes could have been to reduce toxic effects rather
than increase resource use. Also, bacteria are known to produce
signalling molecules that can have inter-specific effects—for ex-
ample, antimicrobial properties [37] or positive effects such as
stimulating enzyme production [41]. In principle, these could have
caused some of the changes in growth rates we observed in
interaction assays and they would be interesting traits to in-
vestigate in future studies. However, typical signalling molecules
such as quorum sensing compounds are usually not produced at
high enough concentrations for detection by NMR [42], and
therefore the changes observed here reflect changes in resource use
rather than changes in signalling. Because the NMR results match
inferences from the growth assay results, it is more parsimonious to
conclude that changing resource use is the dominant mechanism
explaining our findings.

Our results provide among the first experimental evidence
supporting recent theories that species interactions in diverse
communities affect evolutionary responses to an environmental
change. The way in which species adapted to new conditions in
the laboratory when in monoculture—the setting assumed for
many evolutionary theories and experiments—provided little in-
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Figure 5. Correspondence between compounds being generated and compounds being used up by other species in polycultures.
The data summarize results from assays growing one species on beech tea medium, filtering that medium, and then growing a second species on the
used medium. We calculated two quantities: ¢ ; = the amount of compound in the filtrate from species 1 minus the amount of compound in beech
tea (relative to the amount of the DSS standard); 8, , =the amount of compound in the filtrate from species 2 minus the amount of compound in
filtrate from species 1. Positive & indicates production of compounds during the assay and negative 3 indicates consumption. We then compared &
between evolved and ancestral isolates for different species pairs: each point shows the comparison for a given species pair and either monoculture
(black circles) or polyculture (grey crosses) treatments. The x-axis is 8¢, of the evolved isolate minus 8y 1 of the corresponding ancestral isolate. More
positive values indicate that the evolved isolate of the first species produced more of that compound than did its ancestral isolate. To focus on waste
products as potential targets of cross-feeding, only compounds that were produced by the evolved isolate were included. The y-axis is 31, for
evolved isolate minus &, , for the corresponding ancestral isolate. More negative values indicate that the evolved isolate of the second species used
more of the compound than did its ancestral isolate. For example, the point indicated by the arrow represents increased production of acetate by
species A in polyculture relative to ancestral isolates (x-axis) and its increased use by species D in polyculture relative to ancestral isolates (y-axis, all
changes shown separately by species and compound in Figure S5). There is a general negative trend: if the first species produces more of a
compound, the second species is likely to use more of it. However, the effect is significantly stronger in polyculture isolates (grey dashed line) than in
monocultures (black line): polyculture isolates have evolved increased consumption of compounds that have increased in production in polyculture
isolates of other species. Linear model of y=x * treatment (monoculture or polyculture), interaction term coefficient=—1.13, t=—5.4, p<0.0001.

doi:10.1371/journal.pbio.1001330.g005

formation on the outcome of evolution in the diverse community.
Co-occurring species modified the environment by generating new
resources, and thereby altered the selection pressures on other
species and how they used the available resources. Other ex-
periments have reported that genetic diversity inhibited adaptation
to the environment [16,21] but have not investigated whether
adaptation to the biotic environment of co-occurring species
changed how species adapt to a new abiotic environment. If the
processes we observed here are common in other communities,
including multicellular eukaryotes over longer timescales, then
attempts to understand evolutionary dynamics in the wild must
take into account the biotic environment of co-occurring species
[13,43].

As well as being important for understanding evolutionary
dynamics, our experiments show that evolutionary interactions
had important consequences for ecosystem-level functions. Co-
adaptation for approximately 70 generations—not an unrealistic
timescale for responses of annual eukaryotic organisms to
predicted changes over the next hundred years—acted to
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enhance community productivity, through the evolution of
complementary use of resources. Niche complementarity and
facilitation are known to be important determinants of commu-
nity productivity [44,45], and our results add to growing evidence
from microbial systems that niche evolution can exert a strong
influence on productivity [10,46]. Recent work has shown that
biofilms derived from a single clone of Burkholderia cenocepacia
evolved cross-feeding morphotypes that together had enhanced
productivity compared to the morphotypes grown alone [33]: our
study demonstrates similar processes operating between phylo-
genetically distinct species. It remains to be determined whether
adaptation generally acts to enhance ecosystem productivity
[47,48], but if so, it will be an important process to consider in
predicting the impacts of current environmental changes on
ecosystem services. Ecosystem functions such as decomposition
rate might be reduced by local extinction of species providing
important functions, but it is important to know whether
evolution of surviving species will restore (as found here) or
further disrupt those functions.
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Our communities were far less diverse and far simpler than
natural communities. A single tree-hole likely contains thousands of
bacterial species, including anaerobes and many other functional
groups excluded by our isolation protocol. Even the comparatively
depauperate community of multicellular eukaryotes in tree-holes
would typically contain many more than four or five species [49]. A
major goal for future research is to understand whether our findings
scale to natural ecosystems and how other ecological mechanisms
such as predation affect evolutionary outcomes in diverse com-
munities. Strong interactions have been demonstrated between
bacteria and their phages in natural settings [50], but reciprocal co-
adaptation between bacterial species might be rare compared to
adapting to the general biotic environment because of the large
number of potential pairwise interactions among species [51].
Another important process in natural communities is immigration,
which can add variants (new genotypes or species) that might
swamp evolutionary responses [52]. Understanding how natural
assemblages respond to new environments, such as those caused by
global warming, ocean acidification, or pollution, depends critically
on understanding the balance between ecological and evolutionary
responses of the kind we demonstrate here.

Materials and Methods

Species and Media

Bacteria were isolated from single colonies from temporary pools
formed by the roots of a beech tree at Silwood Park, Berkshire,
United Kingdom, in November 2008 (Text S1). BLAST and
Ribosomal Database Project [53] matches and photographs of
colonies of each species are provided in Tables S1 and S2. Species A
and E belong to families Sphingobacteriaceac and Flavobacter-
1aceae, respectively (both in the phylum Bacteroidetes); species B and
C belong to families Enterobacteriaceac and Pseudomonadaceae,
respectively (both in the class Gammaproteobacteria of the phylum
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Proteobacteria); and species D belongs to the family Sphingomo-
nadaceae (in the class Alphaproteobacteria of the phylum
Proteobacteria). Note that our isolation protocol means that all
our bacteria are expected to be aerobic heterotrophs. Isolates were
grown on beech-leaf tea prepared by autoclaving 50 g of autumn fall
beech leaves in 500 ml of water and diluting the filtrate 32-fold [34].

Evolution Experiment

Fifteen replicates of each species in monoculture and of each
five-species community were set up following the protocol in
Figure 1 and Text S1. The tubes were incubated at 25°C and
shaken at 100 rpm. Every 3 and 4 d, 100 pl from each microcosm
was transferred to 2 ml of fresh media for a total of 15 serial
dilutions over 8 wk. Cell densities prior to transfer were estimated
by colony counts on R2A agar. Bacteria were isolated from final
cultures by plating on R2A agar, selecting single colonies, and re-
suspending them in 1 ml of 1/32 x beech tea. Isolates were stored
at —84°C for use in subsequent assays.

Growth Assays on Unused and Used Beech Tea

Growth assays were performed in 1 ml of 32 x beech tea in 24-
well plates inoculated with 250 pl of bacteria from a liquid culture
grown up for 4 d from stored frozen isolates. The plates were kept
at 25°C for 4 d without shaking and growth measured daily using
ODgo. Readings were subtracted from negative controls of sterile
medium placed on each column of the plate. Nine replicates were
used for each Species X' Treatment combination. “Used” beech tea
was prepared by inoculating 14 ml of beech tea with 200 ul of
single bacterial species and allowing growth at 25°C for 14 d.
The first and second isolate used for each assay always belonged
to the same treatment—that is, both ancestral, both monoculture,
or both polyculture isolates. Substrates were then filter sterilized
using a 0.2 pm membrane to remove bacterial cells and leave any
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unused nutrients in the substrate. Sterility was confirmed by
plating on agar. Growth was measured as described for growth
assays on unused beech tea for nine replicates of each
Species xSubstrate x Treatment combination.

Nuclear Magnetic Resonance (NMR) Analyses

Samples of unused beech tea, tea used previously by one
1solate, and tea used previously by one isolate and then a second
isolate (as described in the previous section) were analysed using
proton NMR. Because of the low concentration of carbon
substrates in the beech tea, 5 ml of each sample were lyophilized
and resuspended in 550 ul 90% 2H,O (superscript numbers are
atomic weights; ie., '"H,0O is “normal” water and *H,O is
deuterated) containing 1 mmol 17" 3-(trimethylsilyl)propane-1-
sulfonic acid (DSS) and, 5 mmol 17! sodium azide. The *H,O
provided a field frequency lock for the spectrometer and the DSS
served as an internal chemical shift reference. Spectra were
acquired on a Bruker 800 US? NMR spectrometer (Bruker
BioSpin), with a magnetic field strength of 18.8 T and resulting
'H resonance frequency of 800 MHz, equipped with a 5-mm
cryogenic probe. Spectra were acquired following the approach
given in [54]. Briefly, a one-dimensional NOESY pulse sequence
was used for water suppression; data were acquired into 64 k data
points over a spectral width of 12 kHz, with eight dummy scans
and 256 scans per sample. Spectra were phased in iNMR 3.6
(Mestrelab) and exported to Matlab 2010b (Mathworks) for
further analysis. Distinct peaks were integrated and baseline-
corrected using in-house scripts and assigned where possible using
in-house databases. One resonance with a singlet at chemical shift
8=3.22 ppm was assigned as choline; a COSY spectrum of the
unused medium showed a cross-peak at & 4.05/3.52 ppm, as
would be expected for the methylene protons of choline (although
the resonances were too low intensity to be visible in the 1D
spectra). To measure resource use or production, we calculated
the size of each peak in medium obtained after the growth of an
isolate minus the size of the peak in the medium before the
species had grown on it. Positive values indicate net production of
a compound and negative values indicate net consumption. We
used correlation tests to identify correlated peaks with 7>>0.95,
which might indicate multiple peaks derived from the same
compound. Contaminant peaks derived from methanol and
acetonitrile were removed from the dataset. Variation in resource
use and production across isolates was explored using principal
components analysis of unscaled variances implemented with the
prcomp() function in R [55]: we used unscaled rather than scaled
variances to focus on compounds showing larger changes in their
absolute concentrations.

Productivity of Assembled Communities

MicroResp kits were used to measure community respiration.
Respired COgy results in a change in colour of cresol red
indicator dye suspended above each well of a 96-well plate. Ten
replicates were used per treatment in a single plate and the
experiment was repeated in triplicate. Each well contained
840 pl of 1/32x beech tea and 40 pl of each species from a
stock culture of standard density. The plate was sealed and the
change in optical density (OD) at 570 nm of the indicator gel
measured after 6 h as recommended by the manufacturers [56].
The change in OD of blank wells (filled with 1 ml 1/32 X beech
tea) was used to account for the base level of COy in the vials.
The rate of COy respiration per ml of culture medium was
calculated using the formula provided in the MicroResp manual

[56].
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Statistical Analysis

To calibrate ODggg in terms of cell density per ml of culture
medium [57], we performed serial dilution and colony counts of
stock cultures of isolates of each species from each treatment.
We fitted a linear model with log (colony count)/ml as the
response variable and species, treatment, and ODggp as explan-
atory variables, including interaction terms. The model simplified
to retain species and ODggp, but no interaction terms (i.e., dif-
ferent intercept for calibration line for each species, but same
slopes, Fyg7=32.9, p<<0.0001, 7 =0.64, Figure S8). The fitted
lines were used to calibrate in units of log(number of cells) per ml.
We used linear mixed effects models of repeated measures of cell
density over time to compare growth of bacteria among treatments
and species in the growth assays (Text S1). To report the direction
and effect size of differences among treatments, we used the rate
of change in density over the first 48 h as a simple measure of
Vypax—that 1s, the maximum rate of growth from low densities
(Figure S6). Analysis of variance (ANOVA) and Tukey’s Honest
Significant Difference tests were used to identify significant
contrasts between particular treatments of interest. There was no
evidence of different evolutionary trends in carrying capacity of
isolates (i.e., using density at 96 h) as opposed to growth rate
(Figure S1 versus Figure S7). To test for significant differences in
NMR profiles between treatments, we used Monte Carlo sim-
ulation tests shuffling profiles randomly among species and
treatments. The Euclidean distance between samples was re-
corded, and the mean distance between both evolved treatments in
turn and ancestral isolates was used to measure the amount of
evolution, and the mean distance between each species within a
treatment was used to measure the amount of divergence in
resource use among species. Observed values were compared to
randomised values from 10,000 random permutations. Two-tailed
tests were used.

Supporting Information

Figure S1 Maximum growth rates for each species and evolution
treatment when grown in “used” and “unused” substrate. Boxplots
of maximum growth rates, Vyzx, in cell doublings per day across
evolution treatments, species, and substrates. The dark line shows
the median, the box limits show the inter-quartile range, and
whiskers/points indicate extreme values.

(TIF)

Figure S2 Amounts of compounds identified from distinct peaks
in the NMR spectrum of unused beech tea. Bars show the size of
the major peak for each distinct compound relative to the size of
the standard, DSS; hence peak heights are dimensionless. The
location of each peak on the spectrum is shown after each name
(peak shift in parts per million).

(TTF)

Figure S3 NMR peaks for each species and treatment. The
difference in the size of NMR peaks between tea used by ancestral
(dark grey), monoculture (mid grey), and polyculture (light grey) in
turn and the size of peaks in unused beech tea. Positive values
indicate production of a compound, and negative values indicate
consumption of a compound. Peak sizes are expressed relative to
the size of the standard, DSS, and hence are dimensionless.
(TIF)

Figure 84 Contribution of each compound to variation between
treatments. Loadings of the first four principal components of
resource use and production of the four surviving species across
ancestral, monoculture, and polyculture treatments. The input
data were the difference between the size of the peak in medium
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used by the isolate and the size of the peak in the beech tea (i.e.,
the data in Figure S3). Bars indicate the correlation coefficient
between variation in each compound and the relevant principal
component. The percentage of total variation described by each
principal component is shown above each plot; together they
explain 90.1% of the total variation.

(TIF)

Figure 85 Changes in substrate composition after use by a first
species and then species B or D. The difference in the relative size
of NMR peaks between tea used by a first species’ ancestral (red),
monoculture (green), and polyculture (blue) in turn and the relative
size of peaks in unused beech tea; together with the change in the
size of the peak after a second species grew on medium already
used by the first species (then filter sterilised) for the same
treatments (ancestral, pink; monoculture, light green; polyculture,
light blue). The order of bars for each compound is first species
ancestral, second species ancestral, first species monoculture,
second species monoculture, first species polyculture, and second
species polyculture. Positive values indicate production of a
compound, and negative values indicate consumption of a
compound relative to the starting medium. To improve clarity
of the figure and focus on compounds of interest for cross-feeding,
only compounds in which at least one isolate generated an increase
in peak size of 0.5 are shown. Only species B and species D were
used as the second species, chosen to represent two species
showing different results in the growth assays. Evidence of evolved
cross-feeding in polyculture is apparent when high blue peaks
(generation of the compound by the first species) are associated
with low purple peaks (use of the compound by the second species).
For example, the species A polyculture isolate produces formate,
which in turn is used up by both species B and D.

(TTF)

Figure S6 Growth of replicates of each species in assays on
unused beech tea across the three treatments. The y-axes are
log(cell counts per ml), and x-axes are time since start in hours.
Ancestral isolates of all four species grew linearly over the assay
period on unused beech tea (ANOVA comparing a model with
time as a factor versus a model with time as a continuous variable,
likelihood ratio = 6.9, df=13 and 21, p=0.55). The monoculture
isolates displayed significantly non-linear growth (ANOVA
comparing models with time as a factor and as a continuous
variable, L-ratio 39.3, p<<0.0001). In species A, B, and C there was
a reduction in growth rate between day 2 and 3 followed by
recovery by day 4. In species D, there was a successive decline in
growth rate. In each case, growth between day 0 and day 2 was
faster than at any later period. Polyculture isolates grew linearly
over the assay period (ANOVA comparing models with time as a
factor and as a continuous variable, L-ratio 27.7, p<<0.001).
(TIF)
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